Searchable abstracts of presentations at key conferences in endocrinology

ea0086op6.3 | Endocrine Cancer and Late Effects | SFEBES2022

Knockout mouse embryonic fibroblasts reveal a physiological role for the proto-oncogene PBF in cell adhesion and motility

Kocbiyik Merve , Manivannan Selvambigai , Brookes Katie , Zha Ling , Nieto Hannah R , Read Martin L , McCabe Christopher J , Smith Vicki E

The proto-oncogene pituitary tumor-transforming gene-binding factor (PBF) is upregulated in multiple tumours including thyroid cancer. PBF overexpression mediates tumorigenic processes such as cell motility and accelerates thyroid cancer cell invasion. We have recently shown that both PBF phosphorylation at tyrosine 174 (Y174) and PBF endocytosis are required for PBF-stimulated thyroid and breast cancer cell migration and invasion. This prompted further investigation into a ph...

ea0086oc2.2 | Endocrine Cancer and Late Effects | SFEBES2022

Promotion of thyroid cancer cell migration and invasion by the proto-oncogene PBF is mediated by FGD1 and N-WASP

Manivannan Selvambigai , Alshahrani Mohammed , Thornton Caitlin EM , Raja Saroop , Kocbiyik Merve , Zha Ling , Brookes Katie , Nieto Hannah R , Read Martin L , McCabe Christopher J , Smith Vicki E

Thyroid tumor progression is dependent on cell motility, a highly complex process that involves the co-ordination of cell adhesion, actin dynamics and signal transduction. The proto-oncogene pituitary tumor-transforming gene (PTTG)-binding factor (PBF/PTTG1IP) is a transmembrane glycoprotein that is overexpressed in thyroid cancer and associated with a poorer prognosis. PBF significantly promotes thyroid cancer cell migration and invasion through phosphorylation at PBF-Y174 by...

ea0086oc6.2 | Thyroid | SFEBES2022

Enhancing radioiodide uptake by addressing the mechanism of sodium/iodide symporter (NIS) endocytosis

Zha Ling , Brookes Katie , Thornton Caitlin , Fletcher Alice , Kim Jana , Sunassee Kavitha , Blower Philip J , Nieto Hannah R , Smith Vicki E , Read Martin L , McCabe Christopher J

Background: The sodium/iodide symporter (NIS) frequently shows diminished targeting to the plasma membrane (PM) in differentiated thyroid cancer, resulting in suboptimal radioiodine treatment and poor prognosis. However, the mechanisms which govern the endocytosis of NIS away from the PM – its sole site of transport activity – are ill-defined, and may be of direct therapeutic potential. We previously showed that the proto-oncogene PBF binds NIS and enhances its inter...